254 research outputs found

    Beyond All Worlds: George MacDonald, the Pre-Tolkienians, and the Forgotten Possibilities of Fantasy

    Get PDF
    The history of modern fantasy has been powerfully shaped by the worldbuilding paradigm so successfully executed in J.R.R. Tolkien\u27s 1954-55 trilogy The Lord of the Rings. However, there were nearly a hundred and fifty years of creative work between the birth of fantasy as a genre and Tolkien’s publication of The Lord of the Rings. By examining the pre-Tolkienian fantasists, we find that Tolkien\u27s way of exhaustive consistency was not, and is not, the only way to write fantasy. Phantastes (1858), the first novel by the influential Victorian fantasist George MacDonald, defies contemporary worldbuilding standards almost constantly in its use of references to real world phenomena within Fairy Land and its inclusion of elements that have no precedent or rules of explanation elsewhere in the book. Yet these are not failures of worldbuilding, but instead instances of a consistent alternative paradigm to worldbuilding that I call ‘aesthetic cohesion.’ This method draws upon the forms of German Romanticism to bind the elements of the novel together, using implicit principles of mood and evocation. In this thesis, I argue that Worldbuilding is a legitimate mode for writing fantasy, but its hegemony has forced into one narrow path the genre that, perhaps more than any other, has the potential for unlimited diversity

    Concert recording 2013-03-31b

    Get PDF
    [Track 01]. Sweet Georgie fame / Blossom Dearie -- [Track 02]. Joy spring / Clifford Brown -- [Track 03]. Summer samba / Marcos Valle -- [Track 04]. Rhythm\u27ning / Thelonious Monk -- [Track 05]. One note samba / Antonio Carlos Jobim -- [Track 06]. In a sentimental mood / Duke Ellington -- [Track 07]. Recordame / Joe Henderson -- [Track 08]. Full house / Wes Montgomery -- [Track 09]. Cats and kittens / Peter Erskine -- [Track 10]. Primal prayer / Dan Haerle -- [Track 11]. Cookin\u27 Boox / Detroit Jackson

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    The Hidden History of Black Militant Abolitionism in Antebellum Boston

    No full text

    The Genetic Architecture of Depression in Individuals of East Asian Ancestry

    No full text

    Observation of the Bs0 ⁣D+DB^0_s\!\to D^{*+}D^{*-} decay

    No full text
    International audienceThe first observation of the Bs0 {B}_s^0 → D+^{∗+}D^{∗−} decay and the measurement of its branching ratio relative to the B0^{0}→ D+^{∗+}D^{∗−} decay are presented. The data sample used corresponds to an integrated luminosity of 9 fb1^{−1} of proton-proton collisions recorded by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV between 2011 and 2018. The decay is observed with more than 10 standard deviations and the time-integrated ratio of branching fractions is determined to beB(Bs0D+D)B(B0D+D)=0.269±0.032±0.011±0.008, \frac{\mathcal{B}\left({B}_s^0\to {D}^{\ast +}{D}^{\ast -}\right)}{\mathcal{B}\left({B}^0\to {D}^{\ast +}{D}^{\ast -}\right)}=0.269\pm 0.032\pm 0.011\pm 0.008, where the first uncertainty is statistical, the second systematic and the third due to the uncertainty of the fragmentation fraction ratio fs_{s}/fd_{d}. The Bs0 {B}_s^0 → D+^{*+}D^{*−} branching fraction is calculated to beB(Bs0D+D)=(2.15±0.26±0.09±0.06±0.16)×104, \mathcal{B}\left({B}_s^0\to {D}^{\ast +}{D}^{\ast -}\right)=\left(2.15\pm 0.26\pm 0.09\pm 0.06\pm 0.16\right)\times {10}^{-4}, where the fourth uncertainty is due to the B0^{0}→ D+^{*+}D^{*−} branching fraction. These results are calculated using the average Bs0 {B}_s^0 meson lifetime in simulation. Correction factors are reported for scenarios where either a purely heavy or a purely light Bs0 {B}_s^0 eigenstate is considered.[graphic not available: see fulltext

    First observation of the <math display="inline"><msup><mi>B</mi><mo>+</mo></msup><mo stretchy="false">→</mo><msubsup><mi>D</mi><mi>s</mi><mo>+</mo></msubsup><msubsup><mi>D</mi><mi>s</mi><mo>-</mo></msubsup><msup><mi>K</mi><mo>+</mo></msup></math> decay

    No full text
    International audienceThe B+→Ds+Ds-K+ decay is observed for the first time using proton-proton collision data collected by the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV, corresponding to an integrated luminosity of 9  fb-1. Its branching fraction relative to that of the B+→D+D-K+ decay is measured to be B(B+→Ds+Ds-K+)B(B+→D+D-K+)=0.525±0.033±0.027±0.034, where the first uncertainty is statistical, the second systematic, and the third is due to the uncertainties on the branching fractions of the Ds±→K∓K±π± and D±→K∓π±π± decays. This measurement fills an experimental gap in the knowledge of the family of Cabibbo-favored b¯→c¯cs¯ transitions and opens the path for unique studies of spectroscopy in future

    Open charm production and asymmetry in ppNe collisions at sNN=\sqrt{s_{\scriptscriptstyle\rm NN}} = 68.5 GeV

    No full text
    A measurement of D0D^0 meson production by the LHCb experiment in its fixed-target configuration is presented. The production of D0D^0 mesons is studied with a beam of 2.5 TeV protons colliding on a gaseous neon target at rest, corresponding to a nucleon-nucleon centre-of-mass energy of sNN\sqrt{s_{\rm NN}} = 68.5 GeV. The D0D^0 and D0{\overline D^0} production cross-section in ppNe collisions in the centre-of-mass rapidity range y[2.29,0]y^{\star}\in [-2.29, 0] is found to be σD0y[2.29,0]=48.2±0.3±4.5μb/nucleon\sigma_{D^{0}}^{y^\star \in [-2.29, 0]} = 48.2 \pm 0.3 \pm 4.5 \,\mu\textrm{b/nucleon} where the first uncertainty is statistical and the second is systematic. The D0D0D^0-{\overline D^0} production asymmetry is also evaluated and suggests a negative trend at large negative yy^{\star}. The considered models do not account precisely for all the features observed in the LHCb data, but theoretical predictions including 1%\% intrinsic charm and 10%\% recombination contributions better describe the data than the other models consideredA measurement of D0{{D}} ^0 meson production by the LHCb experiment in its fixed-target configuration is presented. The production of D0{{D}} ^0 mesons is studied with a beam of 2.5 TeV\,\text {Te\hspace{-1.00006pt}V} protons colliding on a gaseous neon target at rest, corresponding to a nucleon–nucleon centre-of-mass energy of sNN=68.5GeV\sqrt{s_{\scriptscriptstyle \text {NN}}} = 68.5\,\,\text {Ge\hspace{-1.00006pt}V} . The sum of the D0{{D}} ^0 and D0{\hspace{0.0pt}\overline{\hspace{0.0pt}{D}}} {}^0 production cross-section in pNep\text {Ne} collisions in the centre-of-mass rapidity range y[2.29,0]y^{\star }\in [-2.29, 0] is found to be \sigma _{D^{0}}^{y^\star \in [-2.29, 0]} = 48.2 \pm 0.3 \pm 4.5 \,\upmu \text {b}/\text {nucleon} where the first uncertainty is statistical and the second is systematic. The D0D0{{{D}} ^0}-{{\hspace{0.0pt}\overline{\hspace{0.0pt}{D}}} {}^0} production asymmetry is also evaluated and suggests a trend towards negative values at large negative yy^{\star }. The considered models do not account precisely for all the features observed in the LHCb data, but theoretical predictions including 1%\% intrinsic charm and 10%\% recombination contributions better describe the data than the other models considered.A measurement of D0D^0 meson production by the LHCb experiment in its fixed-target configuration is presented. The production of D0D^0 mesons is studied with a beam of 2.5 TeV protons colliding on a gaseous neon target at rest, corresponding to a nucleon-nucleon centre-of-mass energy of sNN\sqrt{s_{\rm NN}} = 68.5 GeV. The sum of the D0D^0 and D0{\overline D^0} production cross-section in ppNe collisions in the centre-of-mass rapidity range y[2.29,0]y^{\star}\in [-2.29, 0] is found to be σD0y[2.29,0]=48.2±0.3±4.5μb/nucleon\sigma_{D^{0}}^{y^\star \in [-2.29, 0]} = 48.2 \pm 0.3 \pm 4.5 \,\mu\textrm{b/nucleon} where the first uncertainty is statistical and the second is systematic. The D0D0D^0-{\overline D^0} production asymmetry is also evaluated and suggests a trend towards negative values at large negative yy^{\star}. The considered models do not account precisely for all the features observed in the LHCb data, but theoretical predictions including 1%\% intrinsic charm and 10%\% recombination contributions better describe the data than the other models considered

    Observation of a resonant structure near the Ds+DsD_s^+ D_s^- threshold in the B+Ds+DsK+B^+\to D_s^+ D_s^- K^+ decay

    No full text
    An amplitude analysis of the B+Ds+DsK+B^+\to D_s^+ D_s^- K^+ decay is carried out to study for the first time its intermediate resonant contributions, using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. A near-threshold peaking structure, referred to as X(3960)X(3960), is observed in the Ds+DsD_s^+ D_s^- invariant-mass spectrum with significance greater than 12 standard deviations. The mass, width and the quantum numbers of the structure are measured to be 3956±5±103956\pm5\pm10 MeV, 43±13±843\pm13\pm8 MeV and JPC=0++J^{PC}=0^{++}, respectively, where the first uncertainties are statistical and the second systematic. The properties of the new structure are consistent with recent theoretical predictions for a state composed of ccˉssˉc\bar{c} s\bar{s} quarks. Evidence for an additional structure is found around 4140 MeV in the Ds+DsD_s^+ D_s^- invariant mass, which might be caused either by a new resonance with the 0++0^{++} assignment or by a J/ψϕDs+DsJ/\psi \phi\leftrightarrow D_s^+ D_s^- coupled-channel effect.An amplitude analysis of the B+→Ds+Ds-K+ decay is carried out to study for the first time its intermediate resonant contributions, using proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7, 8, and 13 TeV. A near-threshold peaking structure, referred to as X(3960), is observed in the Ds+Ds- invariant-mass spectrum with significance greater than 12 standard deviations. The mass, width, and the quantum numbers of the structure are measured to be 3956±5±10  MeV, 43±13±8  MeV, and JPC=0++, respectively, where the first uncertainties are statistical and the second systematic. The properties of the new structure are consistent with recent theoretical predictions for a state composed of cc¯ss¯ quarks. Evidence for an additional structure is found around 4140 MeV in the Ds+Ds- invariant mass, which might be caused either by a new resonance with the 0++ assignment or by a J/ψϕ↔Ds+Ds- coupled-channel effect.An amplitude analysis of the B+Ds+DsK+B^+\to D_s^+ D_s^- K^+ decay is carried out to study for the first time its intermediate resonant contributions, using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. A near-threshold peaking structure, referred to as X(3960)X(3960), is observed in the Ds+DsD_s^+ D_s^- invariant-mass spectrum with significance greater than 12 standard deviations. The mass, width and the quantum numbers of the structure are measured to be 3956±5±103956\pm5\pm10 MeV, 43±13±843\pm13\pm8 MeV and JPC=0++J^{PC}=0^{++}, respectively, where the first uncertainties are statistical and the second systematic. The properties of the new structure are consistent with recent theoretical predictions for a state composed of ccˉssˉc\bar{c}s\bar{s} quarks. Evidence for an additional structure is found around 4140 MeV in the Ds+DsD_s^+ D_s^- invariant mass, which might be caused either by a new resonance with the 0++0^{++} assignment or by a J/ψϕDs+DsJ/\psi \phi\leftrightarrow D_s^+ D_s^- coupled-channel effect

    Measurement of the CKM angle γγ with B±D[Kπ±π±π]h± B^\pm \to D[K^\mp π^\pm π^\pm π^\mp] h^\pm decays using a binned phase-space approach

    No full text
    The CKM angle γ\gamma is determined from C ⁣PC\!P-violating observables measured in B±D[Kπ±π±π]h±{B^\pm \to D[ K^\mp \pi^\pm\pi^\pm\pi^\mp] h^\pm}, (h=K,π)(h = K,\pi) decays, where the measurements are performed in bins of the decay phase-space of the DD meson. Using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7,87, 8 and 13TeV13\,\text{TeV}, corresponding to a total integrated luminosity of 9fb19\,\text{fb}^{-1}, γ\gamma is determined to be \begin{equation*} \gamma = \left( 54.8 \: ^{+\:6.0 }_{-\:5.8} \: ^{+\:0.6}_{-\:0.6} \: ^{+\:6.7}_{-\:4.3} \right)^\circ, \end{equation*} where the first uncertainty is statistical, the second systematic and the third from the external inputs on the coherence factors and strong phases of the DD-meson decays.The CKM angle γ is determined from CP-violating observables measured in B±^{±} → D[K^{∓}π±^{±}π±^{±}π^{∓}]h±^{±}, (h = K, π) decays, where the measurements are performed in bins of the decay phase-space of the D meson. Using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to a total integrated luminosity of 9 fb1^{−1}, γ is determined to beγ=(54.8+6.05.8+0.60.6+6.74.3), \gamma ={\left(54.8\begin{array}{c}+6.0\\ {}-5.8\end{array}\begin{array}{c}+0.6\\ {}-0.6\end{array}\begin{array}{c}+6.7\\ {}-4.3\end{array}\right)}^{\circ }, where the first uncertainty is statistical, the second systematic and the third from the external inputs on the coherence factors and strong phases of the D-meson decays.[graphic not available: see fulltext]The CKM angle γ\gamma is determined from C ⁣PC\!P-violating observables measured in B±D[Kπ±π±π]h±{B^\pm \to D[ K^\mp \pi^\pm\pi^\pm\pi^\mp] h^\pm}, (h=K,π)(h = K,\pi) decays, where the measurements are performed in bins of the decay phase-space of the DD meson. Using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7,87, 8 and 13TeV13\,\text{TeV}, corresponding to a total integrated luminosity of 9fb19\,\text{fb}^{-1}, γ\gamma is determined to be \begin{equation*} \gamma = \left( 54.8 \: ^{+\:6.0 }_{-\:5.8} \: ^{+\:0.6}_{-\:0.6} \: ^{+\:6.7}_{-\:4.3} \right)^\circ, \end{equation*} where the first uncertainty is statistical, the second systematic and the third from the external inputs on the coherence factors and strong phases of the DD-meson decays
    corecore